Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Comprehensive Gut Microbiota ; 2:442-458, 2022.
Article in English | Scopus | ID: covidwho-2290444

ABSTRACT

The world is currently experiencing a major pandemic due to COVID-19, a disease caused by SARS-CoV-2 infection. This virus is highly transmissible and clinically presents with a wide range of manifestations. The microbiome has a profound effect on the development of host immunity and susceptibility to infection. In severe COVID-19 patients, alterations of the gut and lung microbiome were detected. Emerging evidence indicates bidirectional crosstalk through a gut-lung axis, in which microbial metabolites, such as short-chain fatty acids, play pivotal roles in human health. In this review we will discuss the gut and lung microbiome in health and during viral infection, with a focus on SARS-CoV-2 infection. © 2022 Elsevier Inc. All rights reserved.

2.
Int J Food Sci Technol ; 2023 Jan 14.
Article in English | MEDLINE | ID: covidwho-2192638

ABSTRACT

Cerrado and Pantanal plants can provide fruits with high nutritional value and antioxidants. This study aims to evaluate four fruit flours (from jatobá pulp, cumbaru almond, bocaiuva pulp and bocaiuva almond) and their effects on the gut microbiota in healthy (HD) and post-COVID-19 individuals (PC). An in vitro batch system was carried out, the microbiota was analysed by 16S rRNA amplicon sequencing and the short-chain fatty acids ratio was determined. Furthermore, the effect of jatobá pulp flour oil (JAO) on cell viability, oxidative stress and DNA damage was investigated in a myelo-monocytic cell line. Beyond confirming a microbiota imbalance in PC, we identified flour-specific effects: (i) reduction of Veillonellaceae with jatobá extract in PC samples; (ii) decrease in Akkermansia with jatoba and cumbaru flours; (iii) decreasing trend of Faecalibacterium and Ruminococcus with all flours tested, with the exception of the bocaiuva almond in HD samples for Ruminococcus and (iv) increase in Lactobacillus and Bifidobacterium in PC samples with bocaiuva almond flour. JAO displayed antioxidant properties protecting cells from daunorubicin-induced cytotoxicity, oxidative stress and DNA damage. The promising microbiota-modulating abilities of some flours and the chemopreventive effects of JAO deserve to be further explored in human intervention studies.

3.
Cells ; 10(12)2021 11 25.
Article in English | MEDLINE | ID: covidwho-1542428

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a serious lung condition characterized by severe hypoxemia leading to limitations of oxygen needed for lung function. In this study, we investigated the effect of anandamide (AEA), an endogenous cannabinoid, on Staphylococcal enterotoxin B (SEB)-mediated ARDS in female mice. Single-cell RNA sequencing data showed that the lung epithelial cells from AEA-treated mice showed increased levels of antimicrobial peptides (AMPs) and tight junction proteins. MiSeq sequencing data on 16S RNA and LEfSe analysis demonstrated that SEB caused significant alterations in the microbiota, with increases in pathogenic bacteria in both the lungs and the gut, while treatment with AEA reversed this effect and induced beneficial bacteria. AEA treatment suppressed inflammation both in the lungs as well as gut-associated mesenteric lymph nodes (MLNs). AEA triggered several bacterial species that produced increased levels of short-chain fatty acids (SCFAs), including butyrate. Furthermore, administration of butyrate alone could attenuate SEB-mediated ARDS. Taken together, our data indicate that AEA treatment attenuates SEB-mediated ARDS by suppressing inflammation and preventing dysbiosis, both in the lungs and the gut, through the induction of AMPs, tight junction proteins, and SCFAs that stabilize the gut-lung microbial axis driving immune homeostasis.


Subject(s)
Arachidonic Acids/therapeutic use , Endocannabinoids/therapeutic use , Gastrointestinal Microbiome , Gastrointestinal Tract/pathology , Lung/pathology , Polyunsaturated Alkamides/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/microbiology , Animals , Antimicrobial Peptides/metabolism , Arachidonic Acids/pharmacology , Butyrates/metabolism , Cecum/pathology , Cell Separation , Colon/drug effects , Colon/pathology , Discriminant Analysis , Dysbiosis/complications , Dysbiosis/microbiology , Endocannabinoids/pharmacology , Enterotoxins , Female , Gastrointestinal Tract/drug effects , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymphocyte Activation/drug effects , Mice, Inbred C57BL , Pneumonia/drug therapy , Pneumonia/microbiology , Polyunsaturated Alkamides/pharmacology , Respiratory Distress Syndrome/complications , T-Lymphocytes/drug effects
4.
Microorganisms ; 8(6)2020 Jun 18.
Article in English | MEDLINE | ID: covidwho-603597

ABSTRACT

Viral respiratory infections (VRIs) can spread quickly and cause enormous morbidity and mortality worldwide. These events pose serious threats to public health due to time lags in developing vaccines to activate the acquired immune system. The high variability of people's symptomatic responses to viral infections, as illustrated in the current COVID-19 pandemic, indicates the potential to moderate the severity of morbidity from VRIs. Growing evidence supports roles for probiotic bacteria (PB) and prebiotic dietary fiber (DF) and other plant nutritional bioactives in modulating immune functions. While human studies help to understand the epidemiology and immunopathology of VRIs, the chaotic nature of viral transmissions makes it difficult to undertake mechanistic study where the pre-conditioning of the metabolic and immune system could be beneficial. However, recent experimental studies have significantly enhanced our understanding of how PB and DF, along with plant bioactives, can significantly modulate innate and acquired immunity responses to VRIs. Synbiotic combinations of PB and DF potentiate increased benefits primarily through augmenting the production of short-chain fatty acids (SCFAs) such as butyrate. These and specific plant polyphenolics help to regulate immune responses to both restrain VRIs and temper the neutrophil response that can lead to acute respiratory distress syndrome (ARDS). This review highlights the current understanding of the potential impact of targeted nutritional strategies in setting a balanced immune tone for viral clearance and reinforcing homeostasis. This knowledge may guide the development of public health tactics and the application of functional foods with PB and DF components as a nutritional approach to support countering VRI morbidity.

SELECTION OF CITATIONS
SEARCH DETAIL